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1 Müntz’s Theorem and the Poisson Equation

1.1 Müntz’s theorem

First, let’s finish our proof of Runge’s theorem.

Theorem 1.1 (Runge). Let K ⊆ C be a compact set with Kc = C\K connected. Let f be
a function which is holomorphic in a neighborhood of K. Then for any ε > 0, there exists
a holomorphic polynomial g such that |f(z)− g(z)| ≤ ε for all z ∈ K.

Proof. We had a measure µ on K such that
∫
K z

n dµ(z) = 0 for all n ∈ N, and we got was∫
K
f(z) dµ(z) = − 1

π

∫∫
C\K

∂ψ

∂ζ
f(ζ)M(ζ)L(dζ),

where

M(ζ) =

∫
K

1

ζ − z
dµ(z).

To finish the proof, it suffices to show that M = 0 on C\K. Consider the Laurent expansion
of M at ∞:

M(ζ) =
∞∑
j=0

1

ζj+1

∫
K
zj dµ(z) =

∞∑
j=0

1

ζj+1
0 = 0.

Then M = 0 for large |ζ|, and hence M = 0 in all of C\K because C\K is connected.

Theorem 1.2 (Müntz). Let (λj)j∈N be a sequence of distinct positive real numbers such
that λj → ∞ as j → ∞. Then the closed linear span of the functions 1, tλ1 , tλ2 , . . . in
C([0, 1]) is equal to C([0, 1]) if and only if

∞∑
j=1

1

λj
=∞.
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Proof. We shall only prove the sufficiency of the series condition. By the spanning criterion,
we have to show the following: if µ is a finite complex Borel measure on [0, 1] such that∫

[0,1] 1 dµ(t) =
∫

[0,1] t
λj dµ(t) = 0 for all j, then for all f ∈ C[0, 1],

∫
f dµ = 0. We claim

that if
∫

[0,1] t
λj dµ(t) = 0 for all j, then

∫
[0,1] t

k dµ(t) = 0 for all k = 1, 2, . . . . The claim
implies the result by the Weierstrass approximation theorem.

We may assume that µ is concentrated on (0, 1] since the integrands tk all vanish at
t = 0. Consider the function F (ζ) =

∫
[0,1] t

ζ dµ(t), where ζ ∈ C with Re(ζ) > 0. Then

F is bounded and holomorphic in Re(ζ) > 0. We have F (λj) = 0 for all j. Map the
right half plane onto the disc: G(z) = F (ζ), where ζ = (1 + z)/(1 − z) for |z| < 1. Then
G ∈ Hol(|z| < 1) is bounded, and G(αj) = 0, where αj = (λj − 1)/(λj + 1)→ 1.

Recall now Jensen’s formula, which says that if f ∈ Hol(|z| < 1) such that f(0) 6= 0,
and (αk)

N
j=1 are the zeros of f (counting multiplicities) such that |αj | ≤ r < 1, then

∑
|αj |≤r

log
r

|αj |
=

1

2π

∫ 2π

0
log |f(reiϕ)| dϕ− log |f(0)|.

So if f is bounded, the right hand side is O(1) as r → 1. Using that log(t) ≥ 1 − t for
t ≥ 0, we get ∑

|αj |≤r

(r − |αj |) ≤ C

for r < 1. Letting r → 1, we get that if f ∈ Hol(|z| < 1) is bounded and not identically 0,
the zeros (αj) of f satisfy

∑
(1− |αj |) <∞.

In our case, αj = (λj − 1)/(λj + 1), and we may assume that αj > 0. Then∑
(1− |αj |) =

∑
(1− λj − 1

λj + 1
) =

∑ 2

λj+1
=∞.

Thus, G = 0, so F (ζ) =
∫

[0,1] t
ζ dµ(t) = 0 for Re(ζ) > 0.

1.2 Solving the Poisson equation using Hahn-Banach

We will try to solve the Poisson equation. Let Ω ⊆ Rn be a bounded open set, and let
f ∈ L2(Ω) be real-valued. Let ∆ =

∑n
j=1 ∂

2
xj be the Laplacian. We would like to solve the

equation ∆u = f in some sense. The existence of solutions to this equation can be reduced
to the proof of an inequality.

Proposition 1.1. There exists a constant A > 0 such that for any ϕ ∈ C2
0 (Ω) (C2 func-

tions on Ω with compact support), we have

‖ϕ‖L2(Ω) ≤ A‖∆ϕ‖L2(Ω).

We will prove this next time.
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Remark 1.1. An inequality of this form holds for all differential operator with constant
coefficients, in place of ∆.
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